Automatic classification of lexical stress errors for German CAPT

Anjana Vakil and Jürgen Trouvain

Department of Computational Linguistics and Phonetics Saarland University, Saarbrücken, Germany

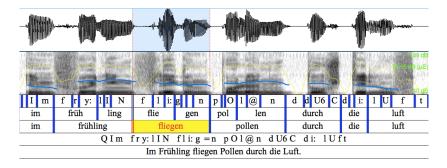
> SLaTE 2015, Leipzig 4 September 2015

UNIVERSITÄT Des SAARLANDES

Lexical stress: Accentuation/prominence of syllable(s) in a word

In German:

- Variable placement, contrastive function um·FAHR·en vs. UM·fahr·en to drive around to run over
- Reflected by duration, F0, intensity
- Impacts intelligibility of non-native (L2) speech


- ► Contrastive lexical stress (LS) difficult for French speakers
- CAPT can help; requires automatic diagnosis
- Classification of LS errors in L2 German unexplored

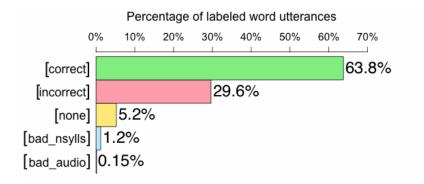
Classification of LS errors by French learners of German How feasible is it? Which features are most useful?

Subset of IFCASL corpus of French-German speech (Fauth et al. 2014)

Extracted utterances of 12 bisyllabic, initial-stress words

- ▶ 668 tokens from 56 French speakers manually annotated
- ▶ 477 tokens from 40 German speakers assumed correct

- Each token assigned a class label: [correct], [incorrect], [none] [bad_nsylls], [bad_audio]
- ► 15 annotators (12 native), each token labeled by ≥2
- Varying phonetics/phonology expertise



Overall pairwise inter-annotator agreement

	Mean	Maximum	Median	Minimum
% Agreement	54.92%	83.93%	55.36%	23.21%
Cohen's κ	0.23	0.61	0.26	-0.01

- Variability not explained by annotator L1 or expertise
- Single gold-standard label selected for each token

Train & evaluate CART classifiers using WEKA toolkit

Training data

- Manually annotated L2 utterances
- Automatically annotated L1 utterances (all [correct])

Held-out testing data

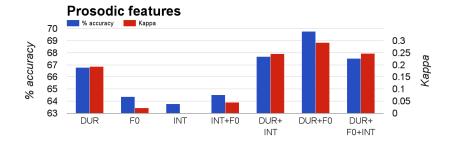
- ► Feature comparison: 1/10 of L2 utterances (random)
- ► Unseen speakers: all utterances from 1 of 56 L2 speakers

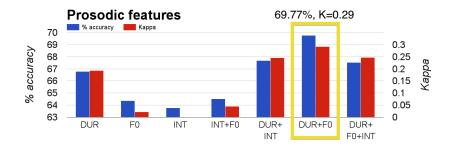
Evaluation

- Compute agreement (% and κ) with gold standard
- Cross-validation (10 or 56 folds)

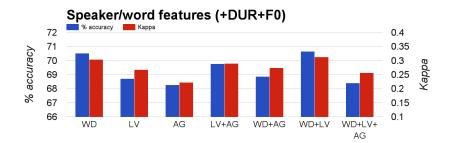
Prosodic feature sets

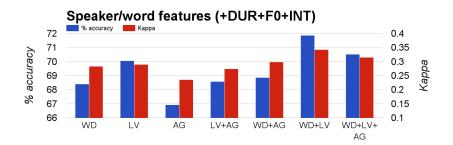
- DUR Duration (relative syllable & nucleus lengths)
- ► F0 Fundamental frequency (mean, max., min., range)
- INT Intensity (mean, max.)

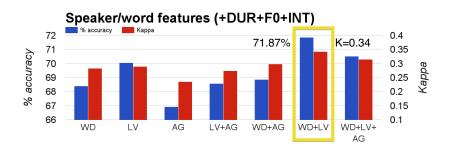

Pitch and energy contours calculated using JSnoori software (http://jsnoori.loria.fr)

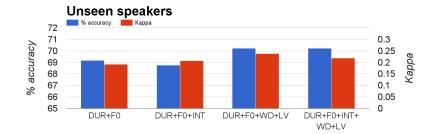

Other features

- ► WD Word uttered (e.g. *Flagge*)
- ► LV Speaker's CEFR skill level (A2|B1|B2|C1)
- AG Speaker's age/gender (Girl|Boy|Woman|Man)

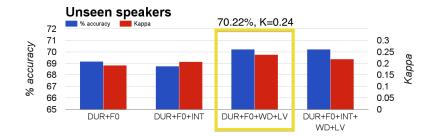








11/14



	% agreement	κ
Best classifier vs. gold standard		
Random test set	71.87%	0.34
Unseen speakers	70.22%	0.24
Majority ([correct]) classifier vs. gold Human vs. human	63.77% 54.92%	0.00 0.23

- Results are encouraging in this context
- Still want better performance for real-world use

- Classification-based diagnosis of lexical stress errors novel approach in German CAPT
- Results of >70% accuracy encouraging (especially considering low human-human agreement)
- Still much room for improvement

Future directions

- More powerful machine learning algorithms
- Additional features (e.g. vowel quality, phrase information)
- Online, semi-supervised learning/active learning