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Small-vocabulary recognition: Why & how

Goal: Enable non-experts to quickly develop basic speech-driven
applications in any Under-Resourced Language (URL)

I Training/adapting recognizer takes data, expertise

I Many applications use ≤100 terms (e.g. Bali et al. 2013)

Strategy: Use existing HRL recognizer for small-vocab recognition
in URLs (Sherwani 2009; Qiao et al. 2010)
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Small-vocabulary recognition: Why & how

Key: Mapped pronunciation lexicon

Terms in target lg. (URL) → Pronunciations in source lg. (HRL)

Yoruba English

igba i
>
gba → igb@ | ib@ | ...?

HRL
recognizer

+ ≈
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Cross-language pronunciation mapping

The Salaam Method (Qiao et al. 2010)

I Requires ≥1 sample per term (a few minutes of audio)

I Mimics phone decoding

I “Super-wildcard” recognition grammar:

term→ {∗| ∗ ∗| ∗ ∗∗}100
(∗ = any source-language phoneme)

I Iterative training algorithm finds confidence-ranked matches

igba → ibæ@, ibõ@, ibE@, . . .

I Accuracy: ≈80-98% for ≤50 terms
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Impact of source language choice

Hypothesis

More phoneme overlap between source/target languages →
Easier pronunciation-mapping → Higher recognition accuracy

Experiment

I Target language: Yoruba

I Source languages: English (US), French (France)
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Impact of source language choice
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Data & method

Data

I 25 Yoruba terms (subset of Qiao et al. 2010 dataset)

I 5 samples/term from 2 speakers (1 male, 1 female)

I Telephone quality (8 kHz)

Method
I Generate Fr./En. lexicons with Salaam (Qiao et al. 2010)

• Microsoft Speech Platform (msdn.microsoft.com/library/hh361572)
• 1, 3, and 5 pronunciations per term

I Compare mean word recognition accuracy
• Same-speaker: Leave-one-out
• Cross-speaker: Train M > Test F; F>M
• t-tests for significance (α = 0.05)
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Results

Same-speaker accuracy
W

or
d 

re
co

gn
iti

on
 a

cc
ur

ac
y 

(%
)

70

80

90

English French 

1 Pronunciation

English French 

3 Pronunciations

English French 

5 Pronunciations

80.0 75.2 80.0 77.2 81.6 80.0
p = 0.20 p = 0.34 p = 0.59

8 / 13



Results

Cross-Speaker Accuracy
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Results

Accuracy by word type (nasal)

English French

Best duro ogba
ogba iba
shii mejo
ogoji ogoji
mesan lehin
beeni tunse
...

...

iba mesan
igba ookan
ogorun sun
meta meji
sun bere

Worst meji igba
10 / 13



Conclusions

Hypothesis

More phoneme overlap between source/target languages →
Easier pronunciation-mapping → Higher recognition accuracy

Predicted: French accuracy > English accuracy
Observed: French accuracy ≤ English accuracy

Possible explanations:

I Source languages may be too similar w.r.t. target language

I Better metric needed for evaluating source-target match

I Baseline recognizer accuracy may play a role
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Ongoing & future work

lex4all : Pronunciation Lexicons for Any Low-resource Language
(Vakil et al. 2014)

http://lex4all.github.io/lex4all

Planned experiments:

I More source-target language pairs

I Discriminative training (Chan and Rosenfeld 2012)

I Algorithm modifications
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